Share Email Print

Proceedings Paper

All-optical transistor action in photonic bandgap materials
Author(s): Marian Florescu; Sajeev John
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

We describe all-optical transistor action in photonic band gap materials doped with active atoms. In the presence of a photonic band gap (PBG) material, a coherent laser beam with the frequency slightly detuned from the resonant atomic transition frequency can drive a collection of two-level atoms to an almost totally inverted state, a phenomenon strictly forbidden in ordinary vacuum. By changing the laser field intensity in the neighborhood of a threshold value, it is possible to drive the atomic system through a transition from states in which the atoms populate preferentially the ground level to almost totally inverted states. In this process, the atomic system switches from a passive medium (highly absorptive) to a active medium (highly amplifying). The switching action in a PBG material is not associated with operating near a narrow cavity resonance with conventional trade-off between switching time and switching threshold intensity. Rather it is associated with an abrupt discontinuity in the engineered broad band electromagnetic density of states of the PBG material. We demonstrate all-optical transistor action in PBG materials by analyzing the absorption spectrum of a second probe laser beam and we show that the probe beam experience a substantial differential gain by slight intensity modulations in the control laser field.

Paper Details

Date Published: 17 February 2003
PDF: 12 pages
Proc. SPIE 4833, Applications of Photonic Technology 5, (17 February 2003); doi: 10.1117/12.474416
Show Author Affiliations
Marian Florescu, Univ. of Toronto (Canada)
Sajeev John, Univ. of Toronto (Canada)

Published in SPIE Proceedings Vol. 4833:
Applications of Photonic Technology 5
Roger A. Lessard; George A. Lampropoulos; Gregory W. Schinn, Editor(s)

© SPIE. Terms of Use
Back to Top