Share Email Print
cover

Proceedings Paper

Coupled electro-thermo-optical simulation of a multisection DBR laser
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

We demonstrate a comprehensive multi-dimensional DBR laser simulation. The DBR laser under investigation consists of three longitudinally integrated waveguide sections: an active section providing the optical gain for the laser operation, a passive phase shift section which contains neither gratings nor active material and a DBR mirror section. This structure is representative for longitudinally integrated devices such as widely tunable sampled-grating laser diodes. In our physics-based approach, we solve the fully coupled semiconductor drift-diffusion equations for electrons and holes and the temperature diffusion equation, taking into account longitudinal current and heat flux. Gain calculation and the photon rate equation are included self-consistently. A general and comprehensive solution of the transverse optical field is combined with the longitudinal field distribution including general DBR sections. The simulator is applied for the design and optimization of state-of-the-art tunable lasers. It proofs to be an effective tool for bandgap engineering, for the optimization of the transverse confinement of the optical mode as well as the current, and for thermal management.

Paper Details

Date Published: 25 July 2003
PDF: 11 pages
Proc. SPIE 4986, Physics and Simulation of Optoelectronic Devices XI, (25 July 2003); doi: 10.1117/12.474324
Show Author Affiliations
Lutz Schneider, Swiss Federal Institute of Technology Zurich (Switzerland)
Andreas Witzig, Swiss Federal Institute of Technology Zurich (Switzerland)
Michael J. Pfeiffer, Swiss Federal Institute of Technology Zurich (Switzerland)
Matthias Streiff, Swiss Federal Institute of Technology Zurich (Switzerland)
Wolfgang Fichtner, Swiss Federal Institute of Technology Zurich (Switzerland)


Published in SPIE Proceedings Vol. 4986:
Physics and Simulation of Optoelectronic Devices XI
Marek Osinski; Hiroshi Amano; Peter Blood, Editor(s)

© SPIE. Terms of Use
Back to Top