Share Email Print

Proceedings Paper

Hydrogen silsesquioxane bilayer resist process for low-voltage electron beam lithography
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Namatsu, van Delft, and others have reported printing exceptionally small features using high voltage (>50kV) electron beam exposure of hydrogen silsesquioxane (HSQ). They also reported that HSQ has very high exposure dose requirements (~2000(mu) C/cm2 at 100kV). We have explored the utility of HSQ as a resist for low-voltage electron beam lithography. Because low energy electrons have a very limited penetration depth, a thin film imaging technique must be employed in conjunction with anisotropic oxygen reactive ion etching to generate the high aspect-ratio features required to provide adequate etch resistance for subsequent image transfer steps. HSQ's exceptionally low oxygen plasma etch rate makes it an excellent top layer for a bilayer process of this sort. High resolution, high aspect ratio images were printed with this system using 1kV electrons with an imaging dose of less than 60 (mu) C/cm2. The resulting features have very smooth sidewalls. Monte Carlo simulations have been performed for the exposure process and compared to experimental results.

Paper Details

Date Published: 24 July 2002
PDF: 9 pages
Proc. SPIE 4690, Advances in Resist Technology and Processing XIX, (24 July 2002); doi: 10.1117/12.474194
Show Author Affiliations
Andrew Thomas Jamieson, Univ. of Texas/Austin (United States)
C. Grant Willson, Univ. of Texas/Austin (United States)
Yautzong Hsu, Etec Systems, Inc. (United States)
Alan D. Brodie, Etec Systems, Inc. (United States)

Published in SPIE Proceedings Vol. 4690:
Advances in Resist Technology and Processing XIX
Theodore H. Fedynyshyn, Editor(s)

© SPIE. Terms of Use
Back to Top