Share Email Print
cover

Proceedings Paper

Investigation on the effect of electron-beam acceleration voltage and electron-beam sharpness on 0.2-um patterns
Author(s): Akemi Moniwa; Shinji Okazaki
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The effect of electron beam acceleration voltage and beam sharpness upon process latitudes of 0.2 micrometers line fabrication is estimated by computer simulation. Process latitude refers to dose and development time latitudes whereby the proper resist profiles are obtained. The latitudes are compared for acceleration voltages of 30 and 50 keV; beam blurs of 0.0, 0.05, and 0.1 micrometers ; resist patterns on bare Si and on Si covered with W layer; and three categorized exposed pattern with different pattern densities. in the case of the bare Si substrate, even beams at 30 keV acceleration with 0.1 micrometers beam blur give proper process latitudes. Thus, the 0.2 micrometers lines can be fabricated at 30 keV acceleration with 0.1 micrometers beam blur. On the contrary, for the resist patterns on W layer, 50 keV is necessary. Moreover, in the case of the bare Si substrate, the higher acceleration voltage made the process latitude larger at each categorized pattern. However, for reducing proximity effects between different categorized patters, a sharper beam blur is more effective than a higher acceleration voltage.

Paper Details

Date Published: 1 August 1991
PDF: 10 pages
Proc. SPIE 1465, Electron-Beam, X-Ray, and Ion-Beam Submicrometer Lithographies for Manufacturing, (1 August 1991); doi: 10.1117/12.47352
Show Author Affiliations
Akemi Moniwa, Hitachi, Ltd. (Japan)
Shinji Okazaki, Hitachi, Ltd. (Japan)


Published in SPIE Proceedings Vol. 1465:
Electron-Beam, X-Ray, and Ion-Beam Submicrometer Lithographies for Manufacturing
Martin C. Peckerar, Editor(s)

© SPIE. Terms of Use
Back to Top