Share Email Print

Proceedings Paper

Correction method for high-precision CD measurements on electrostatically charged wafers
Author(s): Yoichi Ose; Makoto Ezumi; Tatsuaki Ishijima; Hideo Todokoro; Kouichi Nagai
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

A correction method for automatic, high-precision CD-measurements on electrostatically charged wafers has been developed and installed in the Hitachi CD-SEM S-9260 to evaluate its performance. There are two types of charging: global and local. Global charging is stable and spreads all over a wafer while the local charging area is limited within the beam scanning area. A conventional CD-SEM has two weak points with respect to those charged wafers: one is failure at the positioning and autofocusing procedure which interferes with the fully automatic measurement sequence, and the other is disturbance of optical magnification which degrades the precision of CD-measurement values. By probing the global charging voltage with an electrostatic voltmeter prior to the CD-measurements, we subtract the voltage from a retarding voltage and then apply it to the wafer holder. The beam-focusing condition can stay within the fully automatically tunable range. And by generating numerical functions to represent the relationship between the global charging voltage, wafer height, excitation current of the objective lens and optical magnification, with the help of electron optical simulations, we can calculate the true optical magnification and the correct CD-measurement values. The local charging voltage is derived from the voltage shift of S-curves of secondary electron yield between conductive and insulated wafers measured with an energy filter. We correct the CD-measurement values using the simulated proportional relationship between magnifications of the electrostatic micro-lens and the local charging voltage. The coefficient is almost constant when the charging area is smaller than an equivalent circle of 100mm radius. We demonstrate that the CD-measurement values are successfully corrected within 0.1 percent in deviation for both charging types.

Paper Details

Date Published: 16 July 2002
PDF: 10 pages
Proc. SPIE 4689, Metrology, Inspection, and Process Control for Microlithography XVI, (16 July 2002); doi: 10.1117/12.473508
Show Author Affiliations
Yoichi Ose, Hitachi High-Technologies Corp. (Japan)
Makoto Ezumi, Hitachi High-Technologies Corp. (Japan)
Tatsuaki Ishijima, Hitachi High-Technologies Corp. (Japan)
Hideo Todokoro, Hitachi High-Technologies Corp. (Japan)
Kouichi Nagai, Fujitsu Ltd. (Japan)

Published in SPIE Proceedings Vol. 4689:
Metrology, Inspection, and Process Control for Microlithography XVI
Daniel J. C. Herr, Editor(s)

© SPIE. Terms of Use
Back to Top