Share Email Print

Proceedings Paper

Quartz substrate infrared photonic crystal
Author(s): Khosrow Ghadiri; Jalel Rejeb; Vladimir N. Vitchev
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

This paper presents the fabrication of a planar photonic crystal (p2c) made of a square array of dielectric rods embedded in air, operating in the infrared spectrum. A quartz substrate is employed instead of the commonly used silicon or column III-V substrate. Our square structure has a normalized cylinder radius-to-pitch ratio of r/a = 0.248 and dielectric material contrast εr of 4.5. We choose a Z-cut synthetic quartz for its cut (geometry), and etching properties. Then a particular Z-axis etching process is employed in order to ensure the sharp-edged verticality of the rods and fast etching speed. We also present the computer simulations that allowed the establishment of the photonic band gaps (PBG) of our photonic crystal, as well as the actual measurements. An experimental measurement have been carried out and compared with different simulations. It was found that experimental results are in good agreement with different simulation results. Finally, a frequency selective device for optical communication based on the introduction of impurity sites in the photonic crystal is presented. With our proposed structure Optical System on a Chip (OsoC) with micro-cavity based active devices such as lasers, diodes, modulators, couplers, frequency selective emitters, add-drop filters, detectors, mux/demuxes and polarizers connected by passive waveguide links can be realized.

Paper Details

Date Published: 15 January 2003
PDF: 10 pages
Proc. SPIE 4979, Micromachining and Microfabrication Process Technology VIII, (15 January 2003); doi: 10.1117/12.472809
Show Author Affiliations
Khosrow Ghadiri, San Jose State Univ. (United States)
Jalel Rejeb, San Jose State Univ. (United States)
Vladimir N. Vitchev, San Jose State Univ. (United States)

Published in SPIE Proceedings Vol. 4979:
Micromachining and Microfabrication Process Technology VIII
John A. Yasaitis; Mary Ann Perez-Maher; Jean Michel Karam, Editor(s)

© SPIE. Terms of Use
Back to Top