Share Email Print
cover

Proceedings Paper

Experimental considerations on fabrication of a smart actuator for vibration control using shape memory alloy (SMA)
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Despite its great potentials, having a large displacement and force compared to traditional electro-hydraulic servo mechanical actuators or to PZT actuators, there are not so many studies on SMA active actuator. The main reasons are considered as following; (1) SMA has transformation only in one direction, (2) the response is quite slow, and (3) vibration control requires punctual thermo control in real time. In the study at our laboratory, the vibration can be clearly separated into different modes by distributed cluster system. SMA actuators are, then, proposed to use with PZT actuators for control of low and high frequency modes, respectively, to realize all-round actuation. The purpose of this paper is to realize SMA active actuator for low frequency modes. First of all, actuators using SMA wires, partly embedded in CFRP, were fabricated in consideration of SMA/FRP interfacial strength. Their thermo-mechanical behavior had been studied with cooling system. These lightweight actuators were placed on beam structure made of CFRP. Recovery force of beam structure itself was used as reactive force against force generated by SMA. As a result, actuator which is favorable for low frequency vibration modes control, i.e. having a large displacement and a large force, was obtained.

Paper Details

Date Published: 27 June 2002
PDF: 11 pages
Proc. SPIE 4697, Smart Structures and Materials 2002: Damping and Isolation, (27 June 2002); doi: 10.1117/12.472673
Show Author Affiliations
Kaori Yuse, National Institute of Advanced Industrial Science and Technology (Japan)
Yoshihiro Kikushima, National Institute of Advanced Industrial Science and Technology (Japan)
Ya Xu, National Institute of Advanced Industrial Science and Technology (Japan)


Published in SPIE Proceedings Vol. 4697:
Smart Structures and Materials 2002: Damping and Isolation
Gregory S. Agnes, Editor(s)

© SPIE. Terms of Use
Back to Top