Share Email Print

Proceedings Paper

Remote dynamic absorber
Author(s): Todd Stuart Nichols; Hany Ghoneim
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

A new concept, the Passive Remote Electromechanical Dynamic Absorber (RDA) is investigated. The current design utilizes piezoelectric elements to convert the mechanical strain energy of a parent system into electrical energy, which is fed into the RDA. The RDA similarly uses piezoelectric elements to convert the applied electrical energy into mechanical self-excitation and vice versa. A lumped-system model of the coupled system is developed, accounting for the stiffness and mass of both the parent and RDA systems, along with a coupling stiffness term. Additionally, a three dimensional coupled-system finite element model is developed in ANSYS/Multiphysics. Experimental work is conducted to validate the concept of the lumped system model and to validate the finite element modeling technique. A reasonable correlation exists between the experimental results and the analytical predictions. Finite Element Analysis (FEA) provides a reasonable prediction of the RDA performance. Furthermore, analytical predictions of the RDA show a successful reduction of the parent response by up to ~30 db, in a narrow frequency band around its uncoupled resonant frequency. The overall qualitative agreement between the analytical and the experiment confirm the validity and potential of the proposed RDA for vibration suppression of dynamic systems.

Paper Details

Date Published: 27 June 2002
PDF: 10 pages
Proc. SPIE 4697, Smart Structures and Materials 2002: Damping and Isolation, (27 June 2002); doi: 10.1117/12.472648
Show Author Affiliations
Todd Stuart Nichols, STI Technologies Inc. (United States)
Hany Ghoneim, Rochester Institute of Technology (United States)

Published in SPIE Proceedings Vol. 4697:
Smart Structures and Materials 2002: Damping and Isolation
Gregory S. Agnes, Editor(s)

© SPIE. Terms of Use
Back to Top