Share Email Print

Proceedings Paper

Minimization of thermomechanical side effects and increase of ablation efficiency in IR ablation by use of multiply Q-switched laser pulses
Author(s): Alfred Vogel; Peter Schmidt; Barbara Flucke
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Large thermal damage zones have been observed after application of free-running holmium laser pulses inside the human body as, for example, for arthroscopic surgery. The aim of our study is to reduce thermal damage by increasing the ablation efficiency, and to achieve a smooth surface of the ablated tissue. For that purpose we use a multiply Q- switched thulium laser ((lambda) equals 2.0 micrometers , acousto- optical QS) that emits pulse series consisting of a pre- pulse of 40 mJ energy and up to 6 ablation pulses of 100 mJ each, separated by time intervals of 60 microsecond(s) . Q-switched laser pulses explosively ablate the target material. In a liquid environment, this leads to the formation of cavitation bubbles and to mechanical damage of the surrounding tissue. The pre-pulse of 40 mJ serves to minimize the cavitation effects, as it produces a small cavity that is then filled by the ablation products created by the burst of 100-mJ pulses. The pre-pulse creates, furthermore, a channel between fiber tip and target that reduces absorption losses in the liquid. Reduction of cavitation effects and channel formation are demonstrated by time-resolved photography. The use of a thulium laser instead of a holmium laser contributed to the desired reduction of thermal damage, because the penetration depth of the thulium laser light in cartilage (approximately 170 micrometers ) is only half as large as with the holmium laser.

Paper Details

Date Published: 27 June 2002
PDF: 7 pages
Proc. SPIE 4617, Laser Tissue Interaction XIII: Photochemical, Photothermal, and Photomechanical, (27 June 2002); doi: 10.1117/12.472512
Show Author Affiliations
Alfred Vogel, Medical Laser Ctr. Luebeck (Germany)
Peter Schmidt, Medical Laser Ctr. Luebeck (Germany)
Barbara Flucke, Medical Laser Ctr. Luebeck (Germany)

Published in SPIE Proceedings Vol. 4617:
Laser Tissue Interaction XIII: Photochemical, Photothermal, and Photomechanical
Steven L. Jacques; Donald Dean Duncan; Sean J. Kirkpatrick; Andres Kriete; Donald Dean Duncan; Sean J. Kirkpatrick; Andres Kriete, Editor(s)

© SPIE. Terms of Use
Back to Top