Share Email Print

Proceedings Paper

Quantitative determination of subablative thermal exposure producing optimal response of collagenous tissues
Author(s): Alptekin Aksan; John J. McGrath
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Sub-ablative thermal exposure is applied clinically to stabilize joints by taking advantage of the fact that such heating causes collagenous tissues to shrink. Unfortunately heating also generally causes tissue material properties to degrade, owing to the denaturation of the collagen network. The literature reveals that different modalities of heating such as laser and radio frequency modes create different amounts of shrinkage and varying levels of thermal damage (mechanical property degradation) within the target tissue. The relationship between shrinkage and denaturation is poorly understood, limiting the rational design of such thermal therapies. In the present research, a preliminary thermomechanical modeling capable of predicting the final state of a collagenous tissue undergoing sub-ablative heating is presented. The hybrid methodology utilized includes in-vitro experimentation and finite element analysis. It has been shown that the proposed methodology has excellent potential as a tool in simulating and determining the optimal responses of collagenous tissues when they are subjected to sub-ablative thermal treatments.

Paper Details

Date Published: 27 June 2002
PDF: 10 pages
Proc. SPIE 4617, Laser Tissue Interaction XIII: Photochemical, Photothermal, and Photomechanical, (27 June 2002); doi: 10.1117/12.472511
Show Author Affiliations
Alptekin Aksan, Michigan State Univ. (United States)
John J. McGrath, Michigan State Univ. (United States)

Published in SPIE Proceedings Vol. 4617:
Laser Tissue Interaction XIII: Photochemical, Photothermal, and Photomechanical
Steven L. Jacques; Donald Dean Duncan; Donald Dean Duncan; Sean J. Kirkpatrick; Sean J. Kirkpatrick; Andres Kriete; Andres Kriete, Editor(s)

© SPIE. Terms of Use
Back to Top