Share Email Print

Proceedings Paper

Advances in low-defect multilayers for EUVL mask blanks
Author(s): James A. Folta; J. Courtney Davidson; Cindy C. Larson; Christopher C. Walton; Patrick A. Kearney
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Low-defect multilayer coatings are required to fabricate mask blanks for Extreme Ultraviolet Lithography (EUVL). The mask blanks consist of high reflectance EUV multilayers on low thermal expansion substrates. A defect density of 0.0025 printable defects/cm2 for both the mask substrate and the multilayer is required to provide a mask blank yield of 60 percent. Current low defect multilayer coating technology allows repeated coating-added defect levels of 0.05/cm2 for defects greater than 90 nm polystyrene latex sphere (PSL) equivalent size for lots of 20 substrates. Extended clean operation of the coating system at levels below 0.08/cm2 for 3 months of operation has also been achieved. Two substrates with zero added defects in the quality area have been fabricated, providing an existence proof that ultra low defect coatings are possible. Increasing the ion source-to-target distance from 410 to 560 mm to reduce undesired coating of the ion source caused the defect density to increase to 0.2/cm2. Deposition and etching diagnostic witness substrates and deposition pinhole cameras showed a much higher level of ion beam spillover (ions missing the sputter target) than expected. Future work will quantify beam spillover, and test designs to reduce spillover, if it is confirmed to be the cause of the increased defect level. The LDD system will also be upgraded to allow clean coating of standard format mask substrates. The upgrade will confirm that the low defect process developed on Si wafers is compatible with the standard mask format 152 mm square substrates, and will provide a clean supply of EUVL mask blanks needed to support development of EUVL mask patterning processes and clean mask handling technologies.

Paper Details

Date Published: 1 July 2002
PDF: 9 pages
Proc. SPIE 4688, Emerging Lithographic Technologies VI, (1 July 2002); doi: 10.1117/12.472287
Show Author Affiliations
James A. Folta, Lawrence Livermore National Lab. (United States)
J. Courtney Davidson, Lawrence Livermore National Lab. (United States)
Cindy C. Larson, Lawrence Livermore National Lab. (United States)
Christopher C. Walton, Lawrence Livermore National Lab. (United States)
Patrick A. Kearney, Lawrence Livermore National Lab. (United States)

Published in SPIE Proceedings Vol. 4688:
Emerging Lithographic Technologies VI
Roxann L. Engelstad, Editor(s)

© SPIE. Terms of Use
Back to Top