Share Email Print

Proceedings Paper

Optically encoded microspheres for high-throughput analysis of genes and proteins
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

We have developed a novel optical coding technology for massively parallel and high-throughput analysis of biological molecules. Its unprecedented multiplexing capability is based on the unique optical properties of semiconductor quantum dots (QDs) and the ability to incorporate multicolor QQs into small polymer beads at precisely controlled ratios. The use of 10 intensity levels and 6 colors could theoretically code one million nucleic acid or protein sequences. Imaging and spectroscopic studies indicate that the QD tagged beads are highly uniform and reproducible, yielding bead identification accuracies as high as 99.99 percent under favorable conditions. DNA hybridization results demonstrate that the coding and target signals can be simultaneously read at the single-bead level. This spectral coding technology is expected to open new opportunities in gene expression studies, high-throughput screening, and medical diagnosis.

Paper Details

Date Published: 21 June 2002
PDF: 8 pages
Proc. SPIE 4626, Biomedical Nanotechnology Architectures and Applications, (21 June 2002); doi: 10.1117/12.472084
Show Author Affiliations
Xiaohu Gao, Georgia Institute of Technology and Emory Univ. (United States)
Mingyong Han, National Univ. of Singapore (United States)
Shuming Nie, Georgia Institute of Technology, Emory Univ. School of Medicine, and Emory Univ. (United States)

Published in SPIE Proceedings Vol. 4626:
Biomedical Nanotechnology Architectures and Applications
Raymond P. Mariella; Michelle Palmer; Darryl J. Bornhop; Darryl J. Bornhop; Ramesh Raghavachari; Shuming Nie; Ramesh Raghavachari; Catherine J. Murphy; David A. Dunn; David A. Dunn; Raymond P. Mariella; Catherine J. Murphy; Dan V. Nicolau; Shuming Nie; Michelle Palmer; Ramesh Raghavachari, Editor(s)

© SPIE. Terms of Use
Back to Top