Share Email Print

Proceedings Paper

Oligonucleotide/poly(l-lysine) complex attachment on poly(styrene/maleic acid) and poly(styrene/maleic anhydride) polymeric surfaces
Author(s): Elena P. Ivanova; Duy K. Pham; Gregory M. Demyashev; Dan V. Nicolau
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The immobilization efficiency of the complexes of oligonucleotide/poly(L-lysine) onto Poly(Styrene/Maleic Acid), PSMA, and Poly(Styrene/Maleic Anhydride), PSMAA, has been investigated using X-ray photoelectron spectroscopy and atomic force microscopy (AFM) in conjugation with fluorescence-based measurements of DNA attachment. A mono-molecularly thin layer of either electrostatically or covalently (via amide bond) coupled poly(L-lysine) (PL) allows the “switching” of the chemistry from a COOH-based to NH2-based one. The COOH-based chemistry has the advantage of a high yield of reaction but the disadvantage of a low surface concentration of DNA molecules (negative-negative electrostatic exclusion) whereas the NH2-based chemistry provides a higher surface concentration (positive-negative electrostatic attraction) but has a lower yield of covalent binding reaction. The immobilization efficiency of covalently coupled 26-mer oligonucleotides/poly(L-lysine) to polymeric surfaces was estimated as 0.3-0.5 x1012 molecules/mm2 for both polymeric surfaces studied. The electrostatic adsorption of poly(L-lysine)/oligonucleotides onto PSMA and functionalized PSMAA surfaces yielded 0.5 x 1011 and 0.1 x 1010 molecules/mm2, respectively. Although this mode of attachment is not “covalent binding” per se, the evidence is provided that this attachment is strong enough to withstand PCR cycles. The properties of these oligonucleotide/poly(L-lysine) complexes make them promising candidates for DNA-DNA hybridisation assays and PCR.

Paper Details

Date Published: 14 November 2002
PDF: 11 pages
Proc. SPIE 4937, Biomedical Applications of Micro- and Nanoengineering, (14 November 2002); doi: 10.1117/12.471953
Show Author Affiliations
Elena P. Ivanova, Swinburne Univ. of Technology (Australia)
Duy K. Pham, Swinburne Univ. of Technology (Australia)
Gregory M. Demyashev, Swinburne Univ. of Technology (Australia)
Dan V. Nicolau, Swinburne Univ. of Technology (Australia)

Published in SPIE Proceedings Vol. 4937:
Biomedical Applications of Micro- and Nanoengineering
Dan V. Nicolau, Editor(s)

© SPIE. Terms of Use
Back to Top