Share Email Print
cover

Proceedings Paper

Damage location and identification using infra-red thermography and thermoelastic stress analysis
Author(s): Paul R. Cunningham; Janice M. Dulieu-Barton; R. Ajit Shenoi
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Thermoelastic Stress Analysis is used to investigation two damage types in composite materials, namely delamination and fibre breakage. The 'damage' is introduced into the material at the manufacturing stage using PTFE patches to model delamination and by cutting fibers to model breakage. Both Glass Fibre-Reinforced Plastic (GRP) and Carbon Fibre-Reinforced Plastic (CFRP) specimens were tested using an Instron 8800 servohydraulic test machine, and the Deltatherm TSA equipment was used to obtain full-field images of the temperature change in the cyclically loaded specimens. Results are presented to show how the damage introduced produces a change in the measured thermoelastic signal. Issues such as non-adiabatic behavior are discussed in the context of quantitative damage assessment.

Paper Details

Date Published: 18 June 2002
PDF: 11 pages
Proc. SPIE 4704, Nondestructive Evaluation and Health Monitoring of Aerospace Materials and Civil Infrastructures, (18 June 2002); doi: 10.1117/12.470714
Show Author Affiliations
Paul R. Cunningham, Univ. of Southampton (United Kingdom)
Janice M. Dulieu-Barton, Univ. of Southampton (United Kingdom)
R. Ajit Shenoi, Univ. of Southampton (United Kingdom)


Published in SPIE Proceedings Vol. 4704:
Nondestructive Evaluation and Health Monitoring of Aerospace Materials and Civil Infrastructures
Andrew L. Gyekenyesi; Steven M. Shepard; Dryver R. Huston; A. Emin Aktan; Peter J. Shull, Editor(s)

© SPIE. Terms of Use
Back to Top