Share Email Print

Proceedings Paper

Direct-write of sensor devices by a laser forward transfer technique
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The use of direct-write techniques in the design and manufacture of sensor devices provides a flexible approach for next generation commercial and defense sensor applications. Using a laser forward transfer technique, we have demonstrated the ability to rapidly prototype temperature, biological and chemical sensor devices. This process, known as matrix assissted pulsed laser evaporation direct-write or MAPLE-DW is compatible with a broad class of materials ranging form metals and electronic ceramics to chemoselective polymers and biomaterials. Various types of miniature sensor designs have been fabricated incorporating different materials such as metals, polymers, biomaterials or composites as multilayers or discrete structures on a single substrate. The MAPLE-DW process is computer controlled which allows the sensor design to be easily modified and adapted to any specific application. To illustrate the potential of this technique, a functional chemical sensor system is demonstrated by fabricating all the passive and sensor components by MAPLE-DW on a polyimide substrate. Additional devices fabricated by MAPLE DW including biosensors and temperature sensors and their performance are shown to illustrate the breadth of MAPLE DW and how this technique may influence current and future sensor applications.

Paper Details

Date Published: 18 June 2002
PDF: 8 pages
Proc. SPIE 4637, Photon Processing in Microelectronics and Photonics, (18 June 2002); doi: 10.1117/12.470642
Show Author Affiliations
Alberto Pique, Naval Research Lab. (United States)
David W. Weir, Naval Research Lab. (United States)
Peter K. Wu, Southern Oregon Univ. (United States)
Bhanu Pratap, Naval Research Lab. (United States)
Craig B. Arnold, Naval Research Lab. (United States)
Bradley R. Ringeisen, Naval Research Lab. (United States)
Robert Andrew McGill, Naval Research Lab. (United States)
Raymond C. Y. Auyeung, Naval Research Lab. (United States)
Richard A. Kant, Naval Research Lab. (United States)
Douglas B. Chrisey, Naval Research Lab. (United States)

Published in SPIE Proceedings Vol. 4637:
Photon Processing in Microelectronics and Photonics
Jan J. Dubowski; Koji Sugioka; Malcolm C. Gower; Willem Hoving; Richard F. Haglund Jr.; Alberto Pique; Frank Traeger; Jan J. Dubowski; Willem Hoving, Editor(s)

© SPIE. Terms of Use
Back to Top