Share Email Print
cover

Proceedings Paper

Bimetallic thermal activated films for microfabrication, photomasks, and data storage
Author(s): Richard Yuqiang Tu; Glenn H. Chapman; Marinko V. Sarunic
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Bimetallic thermal resist Bi/In has shown many applications in the areas of microfabrication, photomasks and data storage. Optical modeling shows that this class of thermal resist is wavelength invariant, and Bi/In can perform even better at 13.4 nm than at 248 nm due to the increase of absorption and the reduction of reflection. Images were successfully made on Bi/In films with both proximity and projection exposures with Nd:YAG laser running at 2nd harmonic wavelength. A new kind of developing solution used at room temperature was found to be more effective in descumming than nitric acetic acid solution. Both have the etching selectively of unexposed area to exposed areas > 60:1. Developed Bi/In resists shows good conductivity, which can be used as both a metal plating masking and seeding layer, 2 to 10 micrometers wide CU and Ni lines and squares were successfully plated on the developed Bi/In patterns on glass slides and silicon wafers. Shelf test shows that the properties of Bi/In film do not change after being kept in a humid temperature-lifted environment for 10 days. Large optical transmission changes indicate Bi/In can be used for direct-write photomasks and data storage media. Heat- treatment enhances the OD exposed/unexposed OD change.

Paper Details

Date Published: 18 June 2002
PDF: 11 pages
Proc. SPIE 4637, Photon Processing in Microelectronics and Photonics, (18 June 2002); doi: 10.1117/12.470639
Show Author Affiliations
Richard Yuqiang Tu, Simon Fraser Univ. (Canada)
Glenn H. Chapman, Simon Fraser Univ. (Canada)
Marinko V. Sarunic, Simon Fraser Univ. (Canada)


Published in SPIE Proceedings Vol. 4637:
Photon Processing in Microelectronics and Photonics
Jan J. Dubowski; Willem Hoving; Koji Sugioka; Malcolm C. Gower; Richard F. Haglund; Alberto Pique; Frank Traeger; Jan J. Dubowski; Willem Hoving, Editor(s)

© SPIE. Terms of Use
Back to Top