Share Email Print

Proceedings Paper

Quantum dot infrared photodetectors
Author(s): Pallab Bhattacharya; Adrienne D. Stiff-Roberts; Sanjay Krishna; Stephen W. Kennerly
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Mid- and far-infrared detectors operating at elevated temperatures (T>150K) are critical for imaging applications. In(Ga)As/GaAs quantum dots, grown by self-organized epitaxy, are an important material for the design and fabrication of high-temperature infrared photodetectors. Quantum dot infrared photodetectors (QDIPs) allow normal-incidence operation, in addition to low dark currents and multispectral response. The long intersubband relaxation time of electrons in quantum dots improves the responsivity of the detectors, contributing to better high-temperature performance. These devices also exhibit photoconductive gain. The characteristics of state-of-the-art lateral and vertical QDIPs will be described. We have achieved peak responsivity for wavelengths ranging from 3.7-18micrometers . We have also obtained extremely low dark currents (Idark=27pA,T=100K,Vbias=0.5V), high detectivities (D*=2.9x108 cmHz½/W, T=100K, Vbias=0.2V), and high operating temperatures (T=150K) for these quantum-dot detectors. The excellent performance of these devices at low bias voltages indicates the compatibility of high temperature QDIPs with commercially available silicon read- out circuits for imaging focal plane arrays. These results, as well as infrared imaging with QDIP arrays, will be described and discussed.

Paper Details

Date Published: 12 June 2002
PDF: 10 pages
Proc. SPIE 4646, Physics and Simulation of Optoelectronic Devices X, (12 June 2002); doi: 10.1117/12.470505
Show Author Affiliations
Pallab Bhattacharya, Univ. of Michigan (United States)
Adrienne D. Stiff-Roberts, Univ. of Michigan (United States)
Sanjay Krishna, Univ. of Michigan (United States)
Stephen W. Kennerly, Army Research Lab. (United States)

Published in SPIE Proceedings Vol. 4646:
Physics and Simulation of Optoelectronic Devices X
Peter Blood; Marek Osinski; Yasuhiko Arakawa, Editor(s)

© SPIE. Terms of Use
Back to Top