Share Email Print
cover

Proceedings Paper

High power acoustic insult to living cultured cells as studied by high-frequency scanning acoustic microscopy
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

A plurality of articles discussing combined effects of acoustic high-pressure (mechanical factor) and heat (thermal factor) caused by acoustic vibration on biological tissues and cells has been published. Herein, we contribute the preliminary results describing the behavior of living human skin cells when separately applying shock waves and thermal insult to them. First, we gradually increased temperature of a culturing medium from 37.5 to 52 degree(s)C using the heat plate with temperature controller, and carried out in-situ observation of the cells grown on a substrate via the medium using a scanning acoustic microscope. Second, we provided the pressure using high power ultrasonic pulses generated by a laser induced ultrasonic shock wave system to the cells, wherein the pressure caused by the pulses was measured by a hydrophone, and wherein temperature was monitored by thermocouples. The cells were observed just after giving the impact. The difference between phenomena indicating cellular insult and injury (e.g., shrinkage or lift-off) were clearly visualized by the scanning acoustic microscope with frequency at 1.0 GHz.

Paper Details

Date Published: 11 June 2002
PDF: 8 pages
Proc. SPIE 4702, Smart Nondestructive Evaluation for Health Monitoring of Structural and Biological Systems, (11 June 2002); doi: 10.1117/12.469895
Show Author Affiliations
Chiaki Miyasaka, The Pennsylvania State Univ. (United States)
Bernhard R. Tittmann, The Pennsylvania State Univ. (United States)


Published in SPIE Proceedings Vol. 4702:
Smart Nondestructive Evaluation for Health Monitoring of Structural and Biological Systems
Tribikram Kundu, Editor(s)

© SPIE. Terms of Use
Back to Top