Share Email Print
cover

Proceedings Paper

Electrochemical deposition of Al on semiconductors
Author(s): Tinatin Laperashvili; Manana Khachidze; Iliy Imerlishvili
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Samples used for the fabrication of M-S diodes were growing by Chochralski method especially undoped n-type GaP into (III) oriented wafers. The thickness and carrier concentration was 200-250 mimic and (2-4). 10 exp17 atom/cm3 respectively. At first ohmical contact to the one side of wafer was formed by alloying of indium at the temperature 600°C during 5 min in hydrogen. Then the sample with ohmical contact and wire for preceding the power was covered with chemical stable polystyrene solution except the area where the metal will be deposited. The wafers were then ached chemically, rinsed in distilled water and were transferred immediately into electrolyte. Deposition of metal was done by the usual electrochemical method. Electrolyte was poured into quartz glass. The semiconductors wafer was used as the one electrode and as another electrode was used aluminum. For deposition Al the aqueous solution of chlorides have been used as an electrolyte, which consisted also NaOCI. At first, semiconductor’s wafer was used as the anode and cleaning of semiconductors surface was done. Then the potential was immediately changed in opposite direction and deposition of metal on freshly cleaned surface was done in the same solution in a united technological process. After the process of realization the samples were washed in distilled water. The polystyrene film was removed mechanically and boiling in acetone. Then samples were cut into pieces of area 1-3 mm, and were measured electric and photoelectric characteristics. The electrical and photoelectric characteristics have been studded and they were analyzed in the usual way to calculate the ideality factor (n) and barrier height (o). The values of coefficient n and SB height were 1.05-1.07 and 1.1 eV respectively.

Paper Details

Date Published: 13 November 2002
PDF: 7 pages
Proc. SPIE 4936, Nano- and Microtechnology: Materials, Processes, Packaging, and Systems, (13 November 2002); doi: 10.1117/12.469746
Show Author Affiliations
Tinatin Laperashvili, Institute of Cybernetics (Georgia)
Manana Khachidze, Tbilisi State Univ. (Georgia)
Iliy Imerlishvili, Tbilisi State Univ. (Georgia)


Published in SPIE Proceedings Vol. 4936:
Nano- and Microtechnology: Materials, Processes, Packaging, and Systems
Dinesh K. Sood; Ajay P. Malshe; Ryutaro Maeda, Editor(s)

© SPIE. Terms of Use
Back to Top