Share Email Print

Proceedings Paper

Carbon nanotube and polyaniline composite actuators
Author(s): Van-Tan Truong; May Tehhan; Geoffrey M. Spinks; Gordon G. Wallace
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The actuation of single-wall carbon nanotube (CNT) mat, electrically conducting polyaniline (PAn) film and a composite of these two materials has been investigated in NaNO3 (1 M), NaCl (1 M, 3 M) and HCl (1 M) solutions. The expansion/contraction patterns of the PAn, CNT and CNT/PAn samples are similar in these solutions. Fabrication of the CNT/PAn samples by coating PAn (CNT:PAn= 3:1 by weight) substantially enhanced the actuation strain (0.2 - 0.5 %) of the CNT/PAn composite from a low actuation strain (0.06%) of the CNT mat. This result indicates that the addition of PAn to CNT can increase the strain while the Young's modulus E of the PAn coated CNT bundles could be maintained near the E value of CNT bundles (~640 GPa). In other words, the PAn component contributes to a high strain value while the CNT component to high Young's modulus. The combination of these two factors would result in high actuation stresses produced by CNT/PAn composite actuators.

Paper Details

Date Published: 14 November 2002
PDF: 6 pages
Proc. SPIE 4935, Smart Structures, Devices, and Systems, (14 November 2002); doi: 10.1117/12.469073
Show Author Affiliations
Van-Tan Truong, Defence Science and Technology Organisation (Australia)
May Tehhan, Univ. of Wollongong (Australia)
Geoffrey M. Spinks, Univ. of Wollongong (Australia)
Gordon G. Wallace, Univ. of Wollongong (Australia)

Published in SPIE Proceedings Vol. 4935:
Smart Structures, Devices, and Systems
Erol C. Harvey; Derek Abbott; Vijay K. Varadan, Editor(s)

© SPIE. Terms of Use
Back to Top