Share Email Print
cover

Proceedings Paper

Kromoscopic measurement of glucose in the first overtone region of the near-infrared spectrum
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

The ability of Kromoscopy to measure glucose selectively is demonstrated in solutions composed glucose, urea, triacetin, bovine serum albumin (BSA), cholesterol, and hemoglobin (Hb). Kromoscopic measurements are made with a four-channel instrument designed for measuring light between 1500 and 1900 nm. The channels are configured to respond to four individual bands of near infrared light centered at 1600, 1700, 1750, and 1800 nm. An equation is proposed that describes the relative response for each channel as a function of relevant experimental parameters. This equation predicts the linear response observed for these types of measurements as a function of solute concentration. In addition, molar absorptivities are provided for glucose, urea, triacetin, BSA, Hb, and water. The non-negligible absorptivity of water demands the consideration of water displacement caused by solute dissolution. Channel responses are measured for a series of thirty-one samples. The chemical composition of these samples is designed to minimize the correlations between glucose concentration and the concentrations of all other solutes. Likewise, these samples provide negligible correlation between the concentration of glucose and the extent of water displacement. A calibration model is constructed for glucose by using a conventional P-matrix multiple linear regression analysis of the four-channel information. The resulting model demonstrates selectivity for glucose with values of 1.27 and 1.34 mM for the standard errors of calibration and prediction, respectively, over a glucose concentration range of 1.9 to 19 mM.

Paper Details

Date Published: 23 May 2002
PDF: 9 pages
Proc. SPIE 4624, Optical Diagnostics and Sensing of Biological Fluids and Glucose and Cholesterol Monitoring II, (23 May 2002); doi: 10.1117/12.468318
Show Author Affiliations
Airat K. Amerov, Univ. of Iowa (United States)
Yu Sun, Univ. of Iowa (United States)
Gary W. Small, Ohio Univ. (United States)
Mark A. Arnold, Univ. of Iowa (United States)


Published in SPIE Proceedings Vol. 4624:
Optical Diagnostics and Sensing of Biological Fluids and Glucose and Cholesterol Monitoring II
Alexander V. Priezzhev; Gerard L. Cote, Editor(s)

© SPIE. Terms of Use
Back to Top