Share Email Print
cover

Proceedings Paper

The effects of enhanced UV-B radiation on growth, stomata, flavonoid, and ABA content in cucumber leaves
Author(s): Lizhe An; Jianhui Wang; Yanhong Liu; Tuo Chen; Shijian Xu; Huyuan Feng; Xunling Wang
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Cucumber plants (Cucumis sativus L. cv. Jinchun No 3) grown in a greenhouse were treated with three different biologically effective ultraviolet-B (UV-B) radiation levels: 1.28 kJ. m-2 (CK), 8.82kJ.m-2 (T1) and 12.6 kJ. m-2 (T2). Irradiances corresponded to 8% and 21% reduction in stratospheric ozone in Lanzhou. Plants at three-leaf stage were irradiated 7 h daily for 25 days. The growth, stomata, flavonoid and ABA content in cucumber leaves exposed to 3 levels of UV-B radiation were determined in this paper. The results indicated that, compared with the control after 25 days UV-B radiation, RI of cucumber under T1 treatment is -18.0% and RI under T2 treatment is -48% mostly because of the reduce of leave area and dry weight accompanying with the increase of SLW; the rate of stomata closure under the treatments of T1 and T2 on the 6th day was up to respectively 70% and 89%, and amounted to 90% and 100% on the 18th day, and the guard cells in some stomata apparatus became permanent pores and lost their function at the same time; with the duration of UV-B radiation, the rise of the absorbance to ultraviolet light (305nm) showed the content increase of flavonoid; Abscisic acid (ABA) was determined by means of ELISA which showed that under the T1 treatment, the content of ABA was up to maximum to 510% higher than that of the control on the 21st day, meanwhile, under the treatment of T2, it was the highest on the 18th day to 680% of the control, and then had a decrease tendency on 21st day. The result still indicated that ABA accumulation could be induced by enhanced UV-B the radiation. The bigger was the dose of radiation, the higher was the accumulation of ABA. When intensity of UV-B radiation went beyond the degree of endurance of cucumber plants, ABA content descended then. Cucumber plants resist enhanced UV-B radiation by means of improving the contents of ABA and flavonoid. The increase of ABA content in cucumber leaves could lead to the stomata closure. Therefore, the changes of ABA content and absorbance, the rate of stoma closure in cucumber leaves were the adaptive mechanism to enhanced UV-B radiation.

Paper Details

Date Published: 1 July 2003
PDF: 9 pages
Proc. SPIE 4896, Ultraviolet Ground- and Space-based Measurements, Models, and Effects II, (1 July 2003); doi: 10.1117/12.468231
Show Author Affiliations
Lizhe An, CAREERI, CAS (China)
Lanzhou Univ. (China)
Jianhui Wang, CAREERI, CAS (China)
Yanhong Liu, Lanzhou Univ. (China)
Tuo Chen, CAREERI, CAS (China)
Shijian Xu, Lanzhou Univ. (China)
Huyuan Feng, CAREERI, CAS (China)
Lanzho Univ. (China)
Xunling Wang, Lanzhou Univ. (China)


Published in SPIE Proceedings Vol. 4896:
Ultraviolet Ground- and Space-based Measurements, Models, and Effects II
Wei Gao; Jay R. Herman; Guangyu Shi; Kazuo Shibasaki; James R. Slusser, Editor(s)

© SPIE. Terms of Use
Back to Top