Share Email Print

Proceedings Paper

Quantum cascade lasers with a heterogeneous cascade: two- and multiple-wavelength operation
Author(s): Claire F. Gmachl; Deborah L. Sivco; Axel Straub; Raffaele Colombelli; Trinesha S. Mosely; James N. Baillargeon; Federico Capasso; Alfred Y. Cho
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Unipolar Quantum Cascade (QC) lasers are easily recognized by the cascading scheme, in which electrons traverse a stack of many, typically 30 but sometimes up to 100, active regions alternated with injector regions, rather than only a single active region, as in conventional semiconductor lasers. So far, QC-lasers shared the characteristic, that all stages of the cascade were essentially identical. This makes perfect sense for lasers with optimized performance, with a low threshold current density and high optical output power. The possibility of heterogeneous cascades was sometimes discussed. However, it was uncertain if optimal operating conditions could be achieved for all components of the cascade. Here, we experimentally discuss three types of QC-lasers with heterogeneous cascades. The first type contains two sub-stacks, each using a previously optimized QC structure, connected by a thin InGaAs layer. This results in a QC-laser emitting simultaneously at 5.2 and 8.0 micrometers wavelength, with performance levels similar to those of the respective homogeneous stack lasers. It was not necessary to adjust the design electric field of the two stacks to match each other. Each sub-stack is apportioned the appropriate fraction of the applied bias. In addition, an etch-stop layer inserted between the two sub-stacks allowed fabrication of a tap into the cascade. The latter was used to selectively manipulate the laser threshold of one sub-stack, turning the 8.0 micrometers laser on and off while the adjacent 5.2 micrometers QC-laser was operating undisturbed. We also fabricated a doubly-single mode QC-distributed feedback laser with single-mode emission at 5.0 and 7.5 micrometers with simultaneous single-mode tunability. The second type of QC-laser contains a waveguide core with an interdigitated cascade of two different active regions with matching injectors and emitting at 8.0 and 9.5 micrometers wavelength simultaneously. Finally, the third type of QC-laser with heterogeneous cascade was designed to generate a broadband continuum. We observe gain from 5 to 8 micrometers and laser action continuously from 6 to 8 micrometers .

Paper Details

Date Published: 22 May 2002
PDF: 8 pages
Proc. SPIE 4651, Novel In-Plane Semiconductor Lasers, (22 May 2002); doi: 10.1117/12.467958
Show Author Affiliations
Claire F. Gmachl, Lucent Technologies/Bell Labs. (United States)
Deborah L. Sivco, Lucent Technologies/Bell Labs. (United States)
Axel Straub, Lucent Technologies/Bell Labs. (Germany)
Raffaele Colombelli, Lucent Technologies/Bell Labs. (United States)
Trinesha S. Mosely, Lucent Technologies/Bell Labs. (United States)
James N. Baillargeon, Lucent Technologies/Bell Labs. (United States)
Federico Capasso, Lucent Technologies/Bell Labs. (United States)
Alfred Y. Cho, Lucent Technologies/Bell Labs. (United States)

Published in SPIE Proceedings Vol. 4651:
Novel In-Plane Semiconductor Lasers
Jerry R. Meyer; Claire F. Gmachl, Editor(s)

© SPIE. Terms of Use
Back to Top