Share Email Print

Proceedings Paper

Physics and applications of III-Sb-based type-I QW diode lasers
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

We present recent progress achieved in the development of type-I GaInAsSb/AlGaAsSb quantum-well (QW) lasers covering the 1.74-2.34micrometers spectral range. Diode lasers based on the broadened waveguide design comprising 3 Qws have been studied in detail. Laser structures emitting at 2.23 micrometers exhibited a record high internal quantum efficiency of 89%, internal loss of 6.8cm-1, and threshold current density at infinite cavity length as low as 120 A/cm2, indicating the superior quality of these devices. For the 2micrometers lasers a high characteristic temperature of 179K for the threshold current was achieved for temperatures between 250 and 280 K. In order to investigate the heterobarrier leakage associated with thermally activated carriers, laser structures emitting at 2.23micrometers with different Al- concentrations in the barriers and separate confinement regions have been studied. While the structure with 40% Al revealed the highest To of 103K, the laser with 20% Al yielded the best power efficiency, with a maximum value of 30%. 1.7W in cw mode at room temperature has been achieved for broad area single emitters at (lambda) =2 micrometers , with high-reflection/antireflection coated mirror facets, mounted epi-side down. As an application, tunable diode lasers absorption spectroscopy (TDLAS) sensing small concentrations of methane has been demonstrated using our 2.3micrometers diode laser.

Paper Details

Date Published: 22 May 2002
PDF: 12 pages
Proc. SPIE 4651, Novel In-Plane Semiconductor Lasers, (22 May 2002); doi: 10.1117/12.467945
Show Author Affiliations
Carmen Mermelstein, Fraunhofer-Institut fuer Angewandte Festkoerperphysik (Germany)
M. Rattunde, Fraunhofer-Institut fuer Angewandte Festkoerphysik (Germany)
J. Schmitz, Fraunhofer-Institut fuer Angewandte Festkoerperphysik (Germany)
Rudolf Kiefer, Fraunhofer-Institut fuer Angewandte Festkoerperphysik (Germany)
Martin Walther, Fraunhofer-Institut fuer Angewandte Festkoerperphysik (Germany)
Joachim Wagner, Fraunhofer-Institut fuer Angewandte Festkoerperphysik (Germany)

Published in SPIE Proceedings Vol. 4651:
Novel In-Plane Semiconductor Lasers
Jerry R. Meyer; Claire F. Gmachl, Editor(s)

© SPIE. Terms of Use
Back to Top