Share Email Print
cover

Proceedings Paper

High-resolution real-time imaging processor for airborne SAR
Author(s): Weidong Yu; Shumei Wu
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Real-time imaging processor can provide Synthetic Aperture Radar (SAR) image in real-time mode, which is necessary for airborne SAR applications such as real-time monitoring and battle reconnaissance. This paper describes the development of high-resolution real-time imaging processor in Institute of Electronic, Chinese Academy of Sciences (IECAS). The processor uses parallel multiple channels to implement large-volume calculation needed for SAR real-time imaging. A sub-aperture method is utilized to divide azimuth Doppler spectrum into two parts, which correspond two looks. With sub-aperture method, high processing efficiency, less range migration effect and reduced memory volume can be achieved. The imaging swath is also divided into two segments, which are processed in a parallel way. Range-Doppler algorithm, which consists of range migration correction and azimuth compression, is implemented in the processor. Elaborate software programming ensures a high efficient utilization of hardware. Experimental simulation and field flight indicate this system is successful. The principles, architecture, hardware implementation of the processor are presented in this paper in details.

Paper Details

Date Published: 30 April 2003
PDF: 5 pages
Proc. SPIE 4894, Microwave Remote Sensing of the Atmosphere and Environment III, (30 April 2003); doi: 10.1117/12.467736
Show Author Affiliations
Weidong Yu, Institute of Electronics, CAS (China)
Shumei Wu, Institute of Electronics, CAS (China)


Published in SPIE Proceedings Vol. 4894:
Microwave Remote Sensing of the Atmosphere and Environment III
Christian D. Kummerow; JingShang Jiang; Seiho Uratuka, Editor(s)

© SPIE. Terms of Use
Back to Top