Share Email Print
cover

Proceedings Paper

Next-generation photonic networks
Author(s): Yoshitada Katagiri
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Novel network architecture and key device technology are described for next-generation photonic networks enabling high-performance data communications. To accomplish full-mesh links for efficient data transportaion, time-shared wavelength-division multiplexing is the most promising under the limitation imposed on the total wavelength number available at network nodes. Optical add/drop multipelxing (OADM) using wavelngth-tunable devices is essential for temporal data link fomraiotn. Wavelength managemetn based on absolute wavelength calibraiotn is a key to OADM operations. A simple wavelength dscriminating device using a disk-shaped tunable optical bandpass filter under the synchro-scanned operation is useful for managing the laser wavelengths. High-speed data transmissions of greater than 40 Gbps necessary for efficient operation of the networks are also described. A key is photonic downconversion which enables phase deteciton for optical data streams at above the electrical limitation of around 50 GHz. This technique is applied not only to a phase-locked loop for synchronizing mode-locked pulses to an electrical signal in the much lower frequency range of around 10 GHz, but to timing extraction from 100-Gbps data streams.

Paper Details

Date Published: 18 October 2002
PDF: 15 pages
Proc. SPIE 4902, Optomechatronic Systems III, (18 October 2002); doi: 10.1117/12.467615
Show Author Affiliations
Yoshitada Katagiri, NTT Microsystem Integration Labs. (Japan)


Published in SPIE Proceedings Vol. 4902:
Optomechatronic Systems III
Toru Yoshizawa, Editor(s)

© SPIE. Terms of Use
Back to Top