Share Email Print

Proceedings Paper

Large-aperture spectral radiance calibration source for ultraviolet remote sensing instruments
Author(s): Donald F. Heath
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Radiometric calibration of large aperture space-borne remote sensing instruments designed to measure atmospheric radiances in the 250 to 400 nm wavelength range is difficult. Historically the spectral radiance calibrations of these instruments have been derived from aperture radiances of integrating spheres illuminated internally by quartz-tungsten-halogen (QTH) lamps. Typical aperture radiances increase by a factor of 400 from 250 to 400 nm and by an additional factor of 10 from 400 to 900 nm. The characteristics of the aperture radiances of 51 cm diameter Spectralon sphere illuminated by an external xenon arc and by internal QTH lamps have been measured. The aperture radiance of the sphere illuminated externally by the xenon arc is 15 times larger at 250 nm than the radiance from internal QTH lamp illumination. The radiometric stability and the aperture uniformity at 290 nm from the two types of illumination are comparable. These measurements have been made with a calibration transfer standard spectroradiometer using 14 narrow ion-assisted deposition filters covering the wavelength region from 250 to 920 nm. The calibration scale of the transfer radiometer is tied to a NIST 1000 W FEL lamp spectral irradiance standard.

Paper Details

Date Published: 9 April 2003
PDF: 8 pages
Proc. SPIE 4891, Optical Remote Sensing of the Atmosphere and Clouds III, (9 April 2003); doi: 10.1117/12.467348
Show Author Affiliations
Donald F. Heath, Research Support Instruments, Inc. (United States)

Published in SPIE Proceedings Vol. 4891:
Optical Remote Sensing of the Atmosphere and Clouds III
Hung-Lung Huang; Daren Lu; Yasuhiro Sasano, Editor(s)

© SPIE. Terms of Use
Back to Top