Share Email Print
cover

Proceedings Paper

Novel resist development system for photomasks
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

CDs of photomasks include errors caused by photomask-making processes, namely, writing process, baking process in chemically amplified resist, resist development process, and etching process. Recently, the conventional resist develop methods, such as spray development, have raised issues concerning uneven pattern density on photomasks. Dependency of resist coverage is caused by low solubility of developer containing dissolved resist. In the ideal development process, only fresh developer would be on the resist surface at all times. To realize this ideal development process, we propose a development method, Proximity Gap Suction Development (PGSD), based on a new concept. PGSD involves the use of a scanning nozzle having five slits located in its surface facing the resist surface, a scanning mechanism keeping proximity gap between resist surface and the nozzle surface with slits, and a photomask holder. The nozzle is scanned from end to end of photomask on the holder. Developer spouts from a center slit of the nozzle. Slits at both sides of the center slit suck developer on resist surface with rinse fluid spouting from slits located outside of suction slits on the nozzle. Because proximity gap is kept between resist surface and the nozzle surface, spouted fresh developer reaches resist surface directly and it runs over resist surface at high speed. Then, developer on resist surface is excluded immediately with rinse fluid by suction slits. PGSD can produce CDs of resist pattern controlled precisely on photomask having uneven pattern density. We report details of the PGSD system, and compare the results for CDs obtained by PGSD with those obtained using the conventional method.

Paper Details

Date Published: 27 December 2002
PDF: 8 pages
Proc. SPIE 4889, 22nd Annual BACUS Symposium on Photomask Technology, (27 December 2002); doi: 10.1117/12.467260
Show Author Affiliations
Masamitsu Itoh, Toshiba Corp. (Japan)
Hideaki Sakurai, Toshiba Corp. (Japan)
Yukihiko Esaki, Tokyo Electron Kyushu Ltd. (Japan)
Kotaro Ooishi, Tokyo Electron Kyushu Ltd. (Japan)
Kazuo Sakamoto, Tokyo Electron Kyushu Ltd. (Japan)


Published in SPIE Proceedings Vol. 4889:
22nd Annual BACUS Symposium on Photomask Technology
Brian J. Grenon; Kurt R. Kimmel, Editor(s)

© SPIE. Terms of Use
Back to Top