Share Email Print
cover

Proceedings Paper

Surface and aerosol models for use in radiative transfer codes
Author(s): Quinn James Hart
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Absolute reflectance-based radiometric calibrations of Landsat-5 Thematic Mapper (TM) are improved with the inclusion of a method to invert optical-depth measurements to obtain aerosol-particle size distributions, and a non-Lambertian surface reflectance model. The inverted size distributions can predict radiances varying from the previously assumed jungian distributions by as much as 5 percent, though the reduction in the estimated error is less than one percent. Comparison with measured diffuse-to-global ratios show that neither distribution consistently predicts the ratio accurately, and this is shown to be a large contributor to calibration uncertainties. An empirical model for the surface reflectance of White Sands, using a two-degree polynomial fit as a function of scattering angle, was employed. The model reduced estimated errors in radiance predictions by up to one percent. Satellite calibrations dating from October, 1984 were reprocessed using the improved methods and linear estimations of satellite counts per unit radiance versus time since launch were determined which showed a decrease over time for the first four bands.

Paper Details

Date Published: 1 August 1991
PDF: 12 pages
Proc. SPIE 1493, Calibration of Passive Remote Observing Optical and Microwave Instrumentation, (1 August 1991); doi: 10.1117/12.46694
Show Author Affiliations
Quinn James Hart, Optical Sciences Ctr./Univ. of Arizona (United States)


Published in SPIE Proceedings Vol. 1493:
Calibration of Passive Remote Observing Optical and Microwave Instrumentation
Bruce W. Guenther, Editor(s)

© SPIE. Terms of Use
Back to Top