Share Email Print

Proceedings Paper

Aerosol and cloud extinction profiles retrieved from LITE data using multiple-scattering model
Author(s): Jinhuan Qiu
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

In this paper, two inversion algorithms considering multiple scattering are proposed to retrieve aerosol/cloud extinction coefficient profiles from LITE data, which are called as the Iterative Forward Integration Algorithm (IFIA) and the Iterative Forward-Backward Integration Algorithm (IFBIA). In IFIA, at first assuming no multiple scattering, retrieve the extinction coefficient profile by the forward integration algorithm. Then, using the profile and assuming an aerosol/ cloud phase scattering function, calculate the multiple scattering component by a parameterized multiple scatter lidar equation (or Monte Carlo calculation) and then yield new extinction coefficient profile solution. By using IRA and IFBIA, some typical LITE data are selected to derive aerosol/cloud extinction coefficient profiles. As shown in the inversion results, if the multiple scattering is neglected, there may be a very large uncertainty in the retrieved aerosol/cloud extinction coefficient profile, especially for the shorter-wavelength 355nm channel and the case of cloud layer. The present algorithms considering multiple scattering can produce more reasonable aerosol/cloud extinction coefficient retrievals.

Paper Details

Date Published: 21 March 2003
PDF: 8 pages
Proc. SPIE 4893, Lidar Remote Sensing for Industry and Environment Monitoring III, (21 March 2003); doi: 10.1117/12.466594
Show Author Affiliations
Jinhuan Qiu, Institute of Atmospheric Physics (China)

Published in SPIE Proceedings Vol. 4893:
Lidar Remote Sensing for Industry and Environment Monitoring III
Upendra N. Singh; Toshikasu Itabe; Zhishen Liu, Editor(s)

© SPIE. Terms of Use
Back to Top