Share Email Print

Proceedings Paper

Modification of Ruddick's method for case 2 water atmospheric correction
Author(s): Yan Li
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Ruddick et al. Applied Optics, 39, 897-912 (2000), have extended the standard SeaWiFS atmospheric correction algorithm for use over turbid coastal and inland waters; however, their assumption of a spatially homogeneous constant ratio for the water-leaving reflectances normalized by the sun-sea atmospheric transmittance at 765 and 865 nm, under the simple bb model, can result in a significant inaccuracy for highly turbid water. Using the more accurate bb/(α+bb) model, which, more realistically, does not assume spatial homogeneity ratio, the calculated corresponding perturbation for this assumption is several times larger than what Ruddick et al. evaluated under bb model. Such perturbation-related error could exceed 10% in highly turbid water with R(8) > 0.05. We suggest using the modified assumption, 1/R(8)0/R(7) +(1-α0)/f; instead of Ruddick's assumption, in SeaWiFS atmospheric correction algorithms for turbid waters. The Maclaurin seriers expansion of such modified assumption is expressed as, R(8)0)-1[R(7)+(α0-1)α0-1f1R(7)2+(α0-1)2α0-2f2R(7)3+.....]; -1<(α0-1)α0-1f1R(7)&lt;1 Calibration of α0, an IOPs related regional parameters, is determined on an image-by-image basis from regressive empirical relationship of scatterplot of the-Rayleigh-corrected reflectances for these two bands. The calculated corresponding perturbation for Ruddick's second assumption is several times larger than what Ruddick et al. evaluated under simple bb model. Such perturbation-related error could reach 20% for the highly turbid water over the Pearl River estuary.

Paper Details

Date Published: 8 May 2003
PDF: 7 pages
Proc. SPIE 4892, Ocean Remote Sensing and Applications, (8 May 2003); doi: 10.1117/12.466158
Show Author Affiliations
Yan Li, Second Institute of Oceanography, SOA (China)
Xiamen Univ. (China)

Published in SPIE Proceedings Vol. 4892:
Ocean Remote Sensing and Applications
Robert J. Frouin; Yeli Yuan; Hiroshi Kawamura, Editor(s)

© SPIE. Terms of Use
Back to Top