Share Email Print
cover

Proceedings Paper

Thickness-dependent scatter correction algorithm for digital mammography
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

We have implemented a scatter-correction algorithm (SCA) for digital mammography based on an iterative restoration filter. The scatter contribution to the image is modeled by an additive component that is proportional to the filtered unattenuated x-ray photon signal and dependent on the characteristics of the imaged object. The SCA's result is closer to the scatter-free signal than when a scatter grid is used. Presently, the SCA shows improved contrast-to-noise performance relative to the scatter grid for a breast thickness up to 3.6 cm, with potential for better performance up to 6 cm. We investigated the efficacy of our scatter-correction method on a series of x-ray images of anthropomorphic breast phantoms with maximum thicknesses ranging from 3.0 cm to 6.0 cm. A comparison of the scatter-corrected images with the scatter-free signal acquired using a slit collimator shows average deviations of 3 percent or less, even in the edge region of the phantoms. These results indicate that the SCA is superior to a scatter grid for 2D quantitative mammography applications, and may enable 3D quantitative applications in X-ray tomosynthesis.

Paper Details

Date Published: 3 May 2002
PDF: 10 pages
Proc. SPIE 4682, Medical Imaging 2002: Physics of Medical Imaging, (3 May 2002); doi: 10.1117/12.465591
Show Author Affiliations
Dinko E. Gonzalez Trotter, General Electric Global Research Ctr. (United States)
J. Eric Tkaczyk, General Electric Global Research Ctr. (United States)
John Kaufhold, General Electric Global Research Ctr. (United States)
Bernhard E. H. Claus, General Electric Global Research Ctr. (United States)
Jeffrey W. Eberhard, General Electric Global Research Ctr. (United States)


Published in SPIE Proceedings Vol. 4682:
Medical Imaging 2002: Physics of Medical Imaging
Larry E. Antonuk; Martin Joel Yaffe, Editor(s)

© SPIE. Terms of Use
Back to Top