Share Email Print
cover

Proceedings Paper

Determination of imaging performance of a photostimulable phosphor system for digital mammography
Author(s): James Anthony Seibert; John M. Boone; Virgil N. Cooper
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Quantitative analysis of a prototype photostimulable phosphor system for digital mammography was performed. The pre-sampled MTF, noise power spectrum (NPS), noise equivalent quanta (NEQ), and detective quantum efficiency (DQE) were measured at 26 and 32 kVp to assess the imaging performance of a commercial computed radiography system dedicated for mammographic imaging. The pre-sampled MTF demonstrated 5 percent modulation at 8 lp/mm with a small dependence on kVp, and noise power estimates indicated x-ray quantum-limited spectral characteristics from 2 mR up to approximately 30 mR incident exposure. Maintenance of x-ray information content up to approximately 500,000 quanta/mm2 based upon NEQ measurements was demonstrated. DQE (0 mm-1) was 30-50 percent, DQE (2.5 mm-1) was 15-25 percent, and DQE (4 mm-1) was 5-15 percent, depending on kVp, incident exposure, and readout direction. A significant increase in DQE compared to previous CR mammography implementations was found. In addition to the quantitative measurements, qualitative experience suggests that CR mammography is essentially equivalent to state-of-the-art mammography screen-film detector systems.

Paper Details

Date Published: 3 May 2002
PDF: 10 pages
Proc. SPIE 4682, Medical Imaging 2002: Physics of Medical Imaging, (3 May 2002); doi: 10.1117/12.465588
Show Author Affiliations
James Anthony Seibert, Univ. of California Davis Medical Ctr. (United States)
John M. Boone, Univ. of California Davis Medical Ctr. (United States)
Virgil N. Cooper, UCLA Medical Ctr. (United States)


Published in SPIE Proceedings Vol. 4682:
Medical Imaging 2002: Physics of Medical Imaging
Larry E. Antonuk; Martin Joel Yaffe, Editor(s)

© SPIE. Terms of Use
Back to Top