Share Email Print

Proceedings Paper

Large-area Geiger-mode avalanche photodiodes for short-haul plastic optical fiber communication
Author(s): Aoife M. Moloney; Alan P. Morrison; J. Carlton Jackson; Alan Mathewson; Patrick J. Murphy
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Large-area Geiger-mode avalanche photodiodes (GMAPs) that are designed to be compatible with a 1.5μm CMOS and silicon-on-insulator (SOI) CMOS process are presented here as candidate detectors for use in optoelectronic integrated circuits (OEICs). The photodetectors have 250μm and 500μm diameter active areas with 20um virtual guard ring overlaps. The GMAPs have a breakdown voltage of -30V and will be biased below breakdown in avalanche mode. The diodes' junction capacitances at 5V reverse bias are 11.66pF and 41.71pF respectively and 4.99pF and 17.95pF respectively at 27V reverse bias. The 250μm photodiode has a calculated bandwidth of 454MHz when biased at -5V while the 500μm diode has a calculated bandwidth of 142MHz when biased at -5V calculated using small-signal equivalent circuits for the devices.

Paper Details

Date Published: 27 August 2003
PDF: 8 pages
Proc. SPIE 4876, Opto-Ireland 2002: Optics and Photonics Technologies and Applications, (27 August 2003); doi: 10.1117/12.463925
Show Author Affiliations
Aoife M. Moloney, Univ. College Cork (Ireland)
Alan P. Morrison, Univ. College Cork (Ireland)
J. Carlton Jackson, National Microelectronics Research Ctr. (Ireland)
Alan Mathewson, National Microelectronics Research Ctr. (Ireland)
Patrick J. Murphy, Univ. College Cork (Ireland)

Published in SPIE Proceedings Vol. 4876:
Opto-Ireland 2002: Optics and Photonics Technologies and Applications
Vincent Toal; Norman Douglas McMillan; Gerard M. O'Connor; Eon O'Mongain; Austin F. Duke; John F. Donegan; James A. McLaughlin; Brian D. MacCraith; Werner J. Blau, Editor(s)

© SPIE. Terms of Use
Back to Top