Share Email Print

Proceedings Paper

Optimization of Q factor in optical nanocavities based on free-standing membranes
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

We express the quality factor of a mode in terms of the Fourier transforms of its field components, and prove that the reduction in radiation loss can be achieved by suppressing the mode's wave-vector components within the light cone. Although this is intuitively clear, our analytical proof gives us insight into how to achieve the Q factor optimization, without the mode delocalization. We focus on the dipole defect mode in free standing membrane and achieve Q > 104, while preserving the mode volume of the order of one half of cubic wavelength in material. The derived expressions and conclusions can be used in optimization of Q factor for any type of defect in planar photonic crystals.

Paper Details

Date Published: 25 April 2002
PDF: 8 pages
Proc. SPIE 4655, Photonic Bandgap Materials and Devices, (25 April 2002); doi: 10.1117/12.463873
Show Author Affiliations
Jelena Vuckovic, California Institute of Technology (United States)
Axel Scherer, California Institute of Technology (United States)

Published in SPIE Proceedings Vol. 4655:
Photonic Bandgap Materials and Devices
Ali Adibi; Axel Scherer; Shawn-Yu Lin, Editor(s)

© SPIE. Terms of Use
Back to Top