Share Email Print

Proceedings Paper

Hybrid integrated tunable optical transmitter subsystem on a chip
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The need for tunable optical transmitters in optical networking is growing at a rapid rate. A tunable optical transmitter is the combination of a tunable laser, an isolator, and a modulator. Although today lasers and modulators could be integrated together on a single chip, an integrated component of this type would not be useful because the absence of an isolator between the two elements would cause optical reflections to reach the laser, leading to a high level of frequency chirp and relaxation oscillations. Therefore discrete external modulators are used, and lasers are coupled to them through discrete optical isolators. We report on recent developments in integrated active, thermo-optic, magneto-optic and electro-optic technologies that enable the production of a fully integrated tunable transmitter. This transmitter consists of a planar polymer waveguide circuit that is built on a silicon chip and in which films of a variety of materials are embedded. This subsystem on a chip includes a laser chip coupled to a thermo-optically tunable planar polymeric filter resulting in a tunable external cavity laser; an integrated magneto-optic isolator consisting of a planar polymer waveguide with inserted thin films of yttrium iron garnet for Faraday rotation, crystal ion sliced LiNbO3 for half-wave retardation, and polarizers; and an electro-optic modulator consisting of a crystal ion sliced LiNbO3 thin film patterned with a Mach-Zehnder interferometer and grafted into the polymer circuit, capable of operating with less than 5 Volts at modulation speeds up to 40 Ghz.

Paper Details

Date Published: 27 March 2002
PDF: 12 pages
Proc. SPIE 4654, Silicon-based and Hybrid Optoelectronics IV, (27 March 2002); doi: 10.1117/12.463843
Show Author Affiliations
Louay A. Eldada, Telephotonics, Inc. (United States)
Alexander Newburgh, Telephotonics, Inc. (United States)
Junichiro Fujita, Telephotonics, Inc. (United States)
Antonije M. Radojevic, Telephotonics, Inc. (United States)
Reinald Gerhardt, Telephotonics, Inc. (United States)

Published in SPIE Proceedings Vol. 4654:
Silicon-based and Hybrid Optoelectronics IV
David J. Robbins; Ghassan E. Jabbour, Editor(s)

© SPIE. Terms of Use
Back to Top