Share Email Print
cover

Proceedings Paper

Generalized characteristic model for lithography: application to negative chemically amplified resists
Author(s): David H. Ziger; Chris A. Mack; Romelia G. Distasio
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

A generalized approach towards modeling resist performance is introduced and applied towards characterizing a negative chemically amplified resist system. The Generalized Characteristic Model for Lithography is used to extract parameters to easily evaluate development rates from characteristic curves. The model suggests that two lumped parameters, (alpha) nn and E0, dominate lithographic response for negative chemically amplified resists. Both (alpha) nn and E0 were regressed from characteristic curves over a postexposure bake temperature and time range from 110-150 C and 30-90 s and develop times from 30-150 s. E0 showed the predicted postexposure bake temperature and time and develop time dependencies over the processing window while (alpha) nn did not. Possible explanations for this discrepancy are discussed. These parameters were used to simulate linewidths that were compared with experimental results. Linewidth predictions using the Generalized Characteristic Model agreed to within 15% of experimental results over the entire processing window.

Paper Details

Date Published: 1 June 1991
PDF: 13 pages
Proc. SPIE 1466, Advances in Resist Technology and Processing VIII, (1 June 1991); doi: 10.1117/12.46378
Show Author Affiliations
David H. Ziger, SEMATECH (United States)
Chris A. Mack, SEMATECH (United States)
Romelia G. Distasio, SEMATECH (United States)


Published in SPIE Proceedings Vol. 1466:
Advances in Resist Technology and Processing VIII
Hiroshi Ito, Editor(s)

© SPIE. Terms of Use
Back to Top