Share Email Print

Proceedings Paper

Comparison of support vector machine classification to partial least squares dimension reduction with logistic descrimination of hyperspectral data
Author(s): Machelle Wilson; Susan L. Ustin; David Rocke
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Remote sensing technologies with high spatial and spectral resolution show a great deal of promise in addressing critical environmental monitoring issues, but the ability to analyze and interpret the data lags behind the technology. Robust analytical methods are required before the wealth of data available through remote sensing can be applied to a wide range of environmental problems for which remote detection is the best method. In this study we compare the classification effectiveness of two relatively new techniques on data consisting of leaf-level reflectance from plants that have been exposed to varying levels of heavy metal toxicity. If these methodologies work well on leaf-level data, then there is some hope that they will also work well on data from airborne and space-borne platforms. The classification methods compared were support vector machine classification of exposed and non-exposed plants based on the reflectance data, and partial east squares compression of the reflectance data followed by classification using logistic discrimination (PLS/LD). PLS/LD was performed in two ways. We used the continuous concentration data as the response during compression, and then used the binary response required during logistic discrimination. We also used a binary response during compression followed by logistic discrimination. The statistics we used to compare the effectiveness of the methodologies was the leave-one-out cross validation estimate of the prediction error.

Paper Details

Date Published: 14 March 2003
PDF: 11 pages
Proc. SPIE 4886, Remote Sensing for Environmental Monitoring, GIS Applications, and Geology II, (14 March 2003); doi: 10.1117/12.463169
Show Author Affiliations
Machelle Wilson, Univ. of Georgia (United States)
Susan L. Ustin, Univ. of California/Davis (United States)
David Rocke, Univ. of California/Davis (United States)

Published in SPIE Proceedings Vol. 4886:
Remote Sensing for Environmental Monitoring, GIS Applications, and Geology II
Manfred Ehlers, Editor(s)

© SPIE. Terms of Use
Back to Top