Share Email Print
cover

Proceedings Paper

Configurable adaptive optical system for imaging of ground-based targets from space
Author(s): Brian K. McComas; Edward J. Friedman; R. Brian Hooker; Michael A. Cermak
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Space-based, high resolution, Earth remote sensing systems, that employ large, flexible, lightweight primary mirrors, will require active wavefront correction, in the form of active and adaptive optics, to correct for thermally and vibrationally induced deformations in the optics. These remote sensing systems typically have a large field-of-view. Unlike the adaptive optics on ground-based astronomical telescopes, which have a negligible field-of-view, the adaptive optics on these space-based remote sensing systems will be required to correct the wavefront over the entire field-of-view, which can be several degrees. The error functions for astronomical adaptive optics have been developed for the narrow field-of-view correction of atmospheric turbulence and do not address the needs of wide field space-based systems. To address these needs, a new wide field adaptive optics theory and a new error function are developed. Modeling and experimental results demonstrate the validity of the wide field adaptive optics theory and new error function. This new error function, which is a new extension of conventional adaptive optics, lead to the development of three new types of imaging systems: wide field-of-view, selectable field-of-view, and steerable field-of-view. These new systems can have nearly diffraction-limited performance across the entire field-of-view or a narrow movable region of high-resolution imaging. The factors limiting system performance will be shown. The range of applicability of the wide field adaptive optics theory is shown. The range of applicability is used to avoid limitations in system performance and to estimate the optical systems parameters, which will meet the system’s performance requirements.

Paper Details

Date Published: 20 March 2003
PDF: 12 pages
Proc. SPIE 4884, Optics in Atmospheric Propagation and Adaptive Systems V, (20 March 2003); doi: 10.1117/12.463076
Show Author Affiliations
Brian K. McComas, Ball Aerospace & Technologies Corp. (United States)
Edward J. Friedman, Boeing-SVS, Inc. (United States)
R. Brian Hooker, Univ. of Colorado at Boulder (United States)
Michael A. Cermak, Ball Aerospace & Technologies Corp. (United States)


Published in SPIE Proceedings Vol. 4884:
Optics in Atmospheric Propagation and Adaptive Systems V
Anton Kohnle; John D. Gonglewski, Editor(s)

© SPIE. Terms of Use
Back to Top