Share Email Print
cover

Proceedings Paper

Sea-surface salinity: the missing measurement
Author(s): Erich Franz Stocker; Chester Koblinsky
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Even the youngest child knows that the sea is salty. Yet, routine, global information about the degree of saltiness and the distribution of the salinity is not available. Indeed, the sea surface salinity measurement is a key missing measurement in global change research. Salinity influences circulation and links the ocean to global change and the water-cycle. Space-based remote sensing of important global change ocean parameters such as sea-surface temperature and water-cycle parameters such as precipitation have been available to the research community but a space-based global sensing of salinity has been missing. In July 2002, the National Aeronautical and Space Administration (NASA) announced that the Aquarius mission, focused on the global measurement of sea surface salinity, is one of the missions approved under its ESSP-3 program. Aquarius will begin a risk-reduction phase during 2003. Aquarius will carry a multi-beam 1.4 GHz (L-band) radiometer used for retrieving salinity. It also will carry a 1.2 GHz (L-band) scatterometer used for measuring surface roughness. Aquarius is tentatively scheduled for a 2006 launch into an 8-day Sun-synchronous orbit. Aquarius key science data product will be a monthly, global surface salinity map at 100 km resolution with an accuracy of 0.2 practical salinity units. Aquarius will have a 3 year operational period. Among other things, global salinity data will permit estimates of sea surface density, or buoyancy, that drives the ocean's three-dimensional circulation.

Paper Details

Date Published: 8 April 2003
PDF: 9 pages
Proc. SPIE 4881, Sensors, Systems, and Next-Generation Satellites VI, (8 April 2003); doi: 10.1117/12.463041
Show Author Affiliations
Erich Franz Stocker, NASA Goddard Space Flight Ctr. (United States)
Chester Koblinsky, NASA Goddard Space Flight Ctr. (United States)


Published in SPIE Proceedings Vol. 4881:
Sensors, Systems, and Next-Generation Satellites VI
Hiroyuki Fujisada; Joan B. Lurie; Michelle L. Aten; Konradin Weber; Joan B. Lurie; Michelle L. Aten; Konradin Weber, Editor(s)

© SPIE. Terms of Use
Back to Top