Share Email Print

Proceedings Paper

Improved convergence of electromechanical transducer element
Author(s): Robert Sattler; Gerhard Wachutka
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Electrostatic attraction is a favored principle of actuation in MEMS (e.g. mirrors, relays, membrane devices). In this work we use an electrostatically actuated membrane as demonstrator. Physically based device models require the coupling of the electrostatic and the two domains. One way to reduce this expense consists in reduced order modeling by introducing a local approximation of the electric field using the Differential-Plate-Capacitor-Approximation (DPCA). This semi-analytical approximation can be directly (matrix coupled transducer element) or sequentially (load vector coupling) coupled with the mechanical solver. Both approaches yield results which agree well with those of coupled 3D-field solvers. It turns out that the transducer element converges much faster than the sequentially coupled relaxation scheme, as ong as the voltage is not close to the pull-in voltage. If this is the case then the transducer element has problems to find the equilibrium state at all. To avoid this difficulty we propose the use of a homotopy method to give the transducer element the same accuracy and robustness in the stable and the unstable regions of the operating area. The electrostatic charge and the electrostatic force turn out to be proper homotopy parameters for the given example.

Paper Details

Date Published: 19 April 2002
PDF: 8 pages
Proc. SPIE 4755, Design, Test, Integration, and Packaging of MEMS/MOEMS 2002, (19 April 2002); doi: 10.1117/12.462818
Show Author Affiliations
Robert Sattler, Technische Univ. Muenchen (Germany)
Gerhard Wachutka, Technische Univ. Muenchen (Germany)

Published in SPIE Proceedings Vol. 4755:
Design, Test, Integration, and Packaging of MEMS/MOEMS 2002
Bernard Courtois; Jean Michel Karam; Karen W. Markus; Bernd Michel; Tamal Mukherjee; James A. Walker, Editor(s)

© SPIE. Terms of Use
Back to Top