Share Email Print
cover

Proceedings Paper

Estimating leaf area index in coniferous and deciduous forests in Sweden using Landsat optical sensor data
Author(s): Lars Eklundh
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

This paper reports on research to estimate leaf area index (LAI) in Swedish forests with satellite sensor data. The study is part of a research programme that aims at generating input data for process-oriented forest carbon models. Field-work was carried out in two areas in Sweden about 530 km apart, in the nemoral and boreo-nemoral forest regions. Various ways of estimating LAI in the field were tested, including litter-traps, allometric equations, and light transmission measurements. The capability of Landsat TM and ETM+ for LAI-mapping was investigated with the Nilson and Kuusk forest reflectance model. Results point to channel 3 and the mid-IR channels as particularly important for LAI estimation in coniferous stands, however, modelled reflectances were strongly influenced by background reflectances (particularly at low densities) and leaf optical properties. Top-of-canopy reflectances were derived from Landsat TM and ETM+, and their relationships with field-estimated LAI analysed. Among several vegetation indices tested, the Moisture Stress Index (TM5 / TM4) was one of the best indices for LAI in coniferous stands. In deciduous stands relationships based on the Simple Ratio were superior, however, the explanatory power in deciduous stands was lower than in coniferous stands.

Paper Details

Date Published: 17 March 2003
PDF: 12 pages
Proc. SPIE 4879, Remote Sensing for Agriculture, Ecosystems, and Hydrology IV, (17 March 2003); doi: 10.1117/12.462467
Show Author Affiliations
Lars Eklundh, Lund Univ. (Sweden)


Published in SPIE Proceedings Vol. 4879:
Remote Sensing for Agriculture, Ecosystems, and Hydrology IV
Manfred Owe; Guido D'Urso; Leonidas Toulios, Editor(s)

© SPIE. Terms of Use
Back to Top