Share Email Print

Proceedings Paper

Polarimetric borehole radar application for characterizing subsurface structure
Author(s): Motoyuki Sato; Tomohiro Abe; Hui Zhou; Jung-Woong Ra
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Polarimetric borehole radar experiment was carried out in 2000 in Korea. Two boreholes separated by 20m were used. The host rock is granite. The cavity is located at about 80m depth. Single-hole and cross-hole radar profiles were acquired. We could clearly detect a subsurface cavity filled with air in the raw data. They have shown that cross-hole signal shows "double-dip" attenuation caused by scattering from an air-filled cavity. Although it is a simple technique, we found that it is suitable for detection of subsurface anomaly. Then we checked the attenuation between two boreholes, and showed that we can detect anomalous zone by a ray-based technique. In order to have vertical 2-D image between the boreholes, we developed a reverse time migration technique. In this analysis, we could assume two horizontal layers having different velocities, and we could image the cavity. The location of the cavity could clearly be determined by these signal interpretation.

Paper Details

Date Published: 12 April 2002
PDF: 6 pages
Proc. SPIE 4758, Ninth International Conference on Ground Penetrating Radar, (12 April 2002); doi: 10.1117/12.462275
Show Author Affiliations
Motoyuki Sato, Tohoku Univ. (Japan)
Tomohiro Abe, Tohoku Univ. (Japan)
Hui Zhou, Nagasaki Univ. (Japan)
Jung-Woong Ra, Korea Advanced Institute of Science and Technology (South Korea)

Published in SPIE Proceedings Vol. 4758:
Ninth International Conference on Ground Penetrating Radar
Steven Koppenjan; Hua Lee, Editor(s)

© SPIE. Terms of Use
Back to Top