Share Email Print
cover

Proceedings Paper

Depth of first detectable defect in a masonry wall using FPR
Author(s): S. Colombo; Antonios Giannopoulos; Mike C. Forde
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

This paper focuses on the accuracy of detection of the first defect from a ground penetrating radar (GPR) signal in a masonry wall. The main conclusions are drawn from a carefully executed piece of experimental research work based upon field work on a masonry wall on the Bell Tower at Cremona. From inspection of the field GPR records, the resolution of detection of the first target or defect was found to be related to the length of the first reflection from the surface of the masonry. Thus conventional geophysics guidelines with respect to target detection related to one-tenth of a wavelength were tested against field observations and found to be inapplicable in relation to the detectability of the first defect. The shallowest detectable target proved to be at a depth of one-third the centre frequency of the antenna.

Paper Details

Date Published: 12 April 2002
PDF: 5 pages
Proc. SPIE 4758, Ninth International Conference on Ground Penetrating Radar, (12 April 2002); doi: 10.1117/12.462216
Show Author Affiliations
S. Colombo, Univ. of Edinburgh (United Kingdom)
Antonios Giannopoulos, Univ. of Edinburgh (United Kingdom)
Mike C. Forde, Univ. of Edinburgh (United Kingdom)


Published in SPIE Proceedings Vol. 4758:
Ninth International Conference on Ground Penetrating Radar
Steven Koppenjan; Hua Lee, Editor(s)

© SPIE. Terms of Use
Back to Top