Share Email Print

Proceedings Paper

35-MHz linear array for medical imaging
Author(s): Jonathan Matthew Cannata; Timothy A. Ritter; K. Kirk Shung
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

This paper discusses the design, fabrication and testing of a 35 MHz linear ultrasonic array. The array features monolithic piezoelectric elements diced out of TRS 600FGHD fine grain high-density ceramic. A lossy urethane doped with gas filled microspheres is used as a kerf-filler to dampen inter-element acoustic propagation and reduce pulse length. The array incorporates a slotted single matching layer made from an unloaded epoxy. This matching layer also contributes to the reduction of pulse length and an increase in sensitivity. Array elements are spaced by a 50 mm pitch and interconnected via a flexible circuit. An 85 (Omega) transmission line coaxial cable is used to electrically match the array elements to the 50 (Omega) system electronics. The final 64-element array design is based on experimental results obtained from several four-element prototype arrays. An average center frequency of 34 MHz with a -6 dB bandwidth of at least 45% is achieved with the final prototype array. The maximum combined electrical and acoustical cross-talk for nearest and next nearest elements is less than -29 dB. The average -40 dB pulse length is 105 ns. The simple design and satisfactory performance of this array make it suitable for large-scale production.

Paper Details

Date Published: 11 April 2002
PDF: 7 pages
Proc. SPIE 4687, Medical Imaging 2002: Ultrasonic Imaging and Signal Processing, (11 April 2002); doi: 10.1117/12.462145
Show Author Affiliations
Jonathan Matthew Cannata, The Pennsylvania State Univ. (United States)
Timothy A. Ritter, The Pennsylvania State Univ. (United States)
K. Kirk Shung, The Pennsylvania State Univ. (United States)

Published in SPIE Proceedings Vol. 4687:
Medical Imaging 2002: Ultrasonic Imaging and Signal Processing
Michael F. Insana; William F. Walker, Editor(s)

© SPIE. Terms of Use
Back to Top