Share Email Print

Proceedings Paper

X-ray optics: new technologies at ESA
Author(s): Marcos Bavdaz; Anthony J. Peacock; Volker Lehmann; Marco W. Beijersbergen; Stefan Kraft
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

In the Science Payload Technology Division of the European Space Agency X-ray optics are being developed for space based astrophysics observatories and planetary missions. Due to the gazing incidence geometries required in the x-ray regions of interest, and the high angular resolutions required, the mass of the optics becomes a major driver in mission design. New technologies have to be explored for future applications, simultaneously achieving good angular resolution and low mass while maintaining collecting aperture. The cosmology mission XEUS requires very large effective area, 30m2 at 1keV, x-ray optics with high angular resolution of below 5" with a goal of 2". This implies a large aperture for a single telescope system, which will necessarily require assembly or deployment in space, and which will be formed by basic mirror modules known as petals. The petals must remain compatible with compact ground handling and production tools and will require minimum modifications to existing calibration facilities. The technology for the implementation of this Wolter-I design is currently based on the European heritage of x-ray optics development and production, dating back to Exosat, launched in 1983, to the currently operating XMM-Newton observatory. Substantial further research and development is required, however, with the key aspects therefore being low mass design and industrialization of the production. New approaches are being considered in parallel to evolutions of the current state-of-the-art technologies. In addition to the XEUS mission optics options, extremely low mass Wolter-I optics are being developed for applications in very deep orbits or planetary remote sensing, having even stronger mass constraints, but having a more relaxed angular resolution requirement. Such optics systems feature dramatically reduced mirror thickness and therefore mass. The current state of development of the ultra-lightweight x-ray optics systems will be presented together with future development plans.

Paper Details

Date Published: 11 March 2003
PDF: 12 pages
Proc. SPIE 4851, X-Ray and Gamma-Ray Telescopes and Instruments for Astronomy, (11 March 2003); doi: 10.1117/12.461733
Show Author Affiliations
Marcos Bavdaz, European Space Agency/ESTEC (Netherlands)
Anthony J. Peacock, European Space Agency/ESTEC (Netherlands)
Volker Lehmann, Infineon Technologies AG (Germany)
Marco W. Beijersbergen, Cosine Research b.v. (Netherlands)
Stefan Kraft, Cosine Research b.v. (Netherlands)

Published in SPIE Proceedings Vol. 4851:
X-Ray and Gamma-Ray Telescopes and Instruments for Astronomy
Joachim E. Truemper; Harvey D. Tananbaum, Editor(s)

© SPIE. Terms of Use
Back to Top