Share Email Print
cover

Proceedings Paper

Classification of interframe difference image blocks for video compression
Author(s): Seong-Gon Kong
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

This paper presents classification of difference image blocks between the two successive image frames for video data compression. Difference blocks are classified to several activity categories according to the image activity distribution. The classification procedure goes in two steps: activity classification and distribution classification. In the activity classification, each interframe difference image block is classified into active or not-active class according to the amount of motion contained in the block. Distribution classification further classifies active image blocks to four activity categories, vertical, horizontal, diagonal, and uniform activities, based on the activity distribution measured by the edge feature vector in the discrete cosine transform domain. A multiplayer feedforward neural network, trained with a small set of sample classification data, successfully classified difference image blocks according to edge feature distribution. The classification scheme improves the performance of video compression at a cost of small increase in the overhead associated with the quantizer switching.

Paper Details

Date Published: 5 April 2002
PDF: 9 pages
Proc. SPIE 4668, Applications of Artificial Neural Networks in Image Processing VII, (5 April 2002); doi: 10.1117/12.461677
Show Author Affiliations
Seong-Gon Kong, Purdue Univ. (United States)


Published in SPIE Proceedings Vol. 4668:
Applications of Artificial Neural Networks in Image Processing VII
Nasser M. Nasrabadi; Aggelos K. Katsaggelos, Editor(s)

© SPIE. Terms of Use
Back to Top