Share Email Print

Proceedings Paper

Measurement of cell surface protein dynamics by two-photon image correlation spectroscopy and image cross-correlation spectroscopy
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Advances in laser-scanning microscopy and the advent of confocal microscopy permitted the development of image correlation spectroscopy (ICS). ICS is an imaging analog of fluorescence correlation spectroscopy (FCS) optimized for measuring the aggregation state of fluorescently labeled macromolecules on the surface of biological cells. The ICS method entails spatial autocorrelation analysis of fluorescence fluctuations within an image sampled from an area of the sample as well as temporal autocorrelation analysis of fluorescence fluctuations through a time series of images. Together, the spatial/temporal autocorrelation analysis enables measurement of fluorophore concentration, aggregation state and transport properties. ICS was first implemented on a confocal laser-scanning microscope (CLSM) using single photon excitation. More recently we have extended the method for two-photon ICS as well as image cross-correlation spectroscopy (ICCS). ICCS allows measurement of co-localization of non-identical molecules labeled with fluorophores of different emission wavelengths. We present a variety of applications of the ICS and ICCS methods in cellular systems. We will discuss the measurement of the transport and clustering properties of membrane receptors by single photon ICS and two-photon ICCS. As well, we will describe how spatial ICS may be used to quantify the distribution of fluorescently labeled dendritic spines in neurons.

Paper Details

Date Published: 1 April 2002
PDF: 10 pages
Proc. SPIE 4633, Commercial and Biomedical Applications of Ultrafast and Free-Electron Lasers, (1 April 2002); doi: 10.1117/12.461365
Show Author Affiliations
Paul W. Wiseman, McGill Univ. (Canada)
Jeffrey A. Squier, Univ. of California/San Diego (United States)

Published in SPIE Proceedings Vol. 4633:
Commercial and Biomedical Applications of Ultrafast and Free-Electron Lasers
Joseph Neev; Andreas Ostendorf; Glenn S. Edwards; Joseph Neev; Andreas Ostendorf; John Clark Sutherland, Editor(s)

© SPIE. Terms of Use
Back to Top