Share Email Print
cover

Proceedings Paper

StarLight space interferometer: optical design and performance modeling
Author(s): Stefan R. Martin; Rhonda M. Morgan; Steven M. Gunter; Randall D. Bartos
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The StarLight mission aimed to place the first formation flying optical interferometer into space in year 2006. Utilizing two spacecraft to form a long baseline Michelson interferometer, it would measure white light fringes on a number of partially resolved stars of magnitudes >5 in the wavelength range 600 to 1000 nm. The interferometer baseline is variable between 30 and 125 m, and also has a fixed 1.3 m mode. The spacecraft are flown in a parabolic geometry which requires an optical delay line to build up more than 14 m of delay on one arm of the interferometer. To obtain high fringe visibility, starlight wavefront, pointing and intensity must be preserved through 22 reflections from mirrors and beamsplitters. The alignment of a total of 27 optics is maintained through careful thermal design and the use of two actuated mirrors on each arm. This paper describes the optical layout, including the beam combiner design which allows star tracking, optical system alignment and fringe formation on a single CCD. The effects of diffraction of the starlight transferred from a distant spacecraft and from optical surface imperfections are modeled. Other contributors to the visibility budget and the resulting variation of fringe visibility across the focal plane are discussed.

Paper Details

Date Published: 26 February 2003
PDF: 12 pages
Proc. SPIE 4852, Interferometry in Space, (26 February 2003); doi: 10.1117/12.460927
Show Author Affiliations
Stefan R. Martin, Jet Propulsion Lab. (United States)
Rhonda M. Morgan, Jet Propulsion Lab. (United States)
Steven M. Gunter, Jet Propulsion Lab. (United States)
Randall D. Bartos, Jet Propulsion Lab. (United States)


Published in SPIE Proceedings Vol. 4852:
Interferometry in Space
Michael Shao, Editor(s)

© SPIE. Terms of Use
Back to Top