Share Email Print
cover

Proceedings Paper

Spectral astrometry mission for planets detection
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The Spectral Astrometry Mission is a space-mission concept that uses simultaneous, multiple-star differential astrometry to measure exo-solar planet masses. The goal of SAM is to measure the reflex motions of hundreds of nearby (~50 pc) F, G and K stars, relative to adjacent stars, with a resolution of 2.5 micro-arcsec. SAM is a new application of Spectral Interferometry (SI), also called Externally Dispersed Interferometry (EDI), that can simultaneously measure the angular difference between the target and multiple reference stars. SI has demonstrated the ability to measure a λ/20,000 white-light fringe shift with only lambda/3 baseline control. SAM's structural stability and compensation requirements are therefore dramatically reduced compared to existing long-arm balanced-arm interferometric astrometry methods. We describe the SAM's mission concept, long-baseline SI astrometry method, and technical challenges to achieving the mission.

Paper Details

Date Published: 26 February 2003
PDF: 12 pages
Proc. SPIE 4852, Interferometry in Space, (26 February 2003); doi: 10.1117/12.460726
Show Author Affiliations
David J. Erskine, Lawrence Livermore National Lab. (United States)
Jerry Edelstein, Univ. of California/Berkeley (United States)


Published in SPIE Proceedings Vol. 4852:
Interferometry in Space
Michael Shao, Editor(s)

© SPIE. Terms of Use
Back to Top